Fractures of the Metacarpals and Phalanges

Alexander C. Coleman, M.D.
Hand and Microvascular Surgery
Andrews Orthopaedics & Sports Medicine
Gulf Breeze, Florida

ANATOMY

DESCRIBE LOCATION
- DORSAL
- VOLAR
- RADIAL
- ULNAR

FINGER NOMENCLATURE
- INDEX FINGER
- LONG / MIDDLE FINGER
- RING FINGER
- SMALL FINGER
- THUMB

AVOID CONFUSION OF NUMBERED DIGITS

SURFACE ANATOMY- CREASES

BONES AND JOINTS
EVALUATION

- **History**
 - Age, handedness, occupation
 - Past medical history
 - History/Mechanism of Injury
 - History of Previous injuries/treatment
 - Tetanus vaccination status

EVALUATION

- **Physical exam**
 - Skin/Nail bed integrity
 - Deformity/Swelling
 - Neurologic evaluation
 - Light touch, 2-point discrimination
 - Capillary refill, pulse
 - Flexor, extensor tendon function
 - Ligaments

EVALUATION

- **Digital Rotation**
 - All digits should point towards scaphoid
 - Look for abnormal digital overlap/scissoring
 - Compare with other hand

HAND RADIOGRAPHIC ANATOMY

- **MUST HAVE GOOD X-RAYS**

THE PERFECT X-RAY

- Perfect Lateral Essential
 - Should see the MP and IP joints in profile
 - Often need dedicated finger films
 - There should be a smooth arc over the dorsum of the phalanges and concentric reduction of the IP joints

METACARPAL FRACTURES

- 5 Metacarpals (RAYS) grouped by type
 - Central Rays: LONG & RING
 - Inherent stability due to transverse MC lig.
 - Border Rays
 - Less stable, more likely to shorten or rotate
 - Thumb Ray
 - Essentially a separate category
 - Lacks stability of lesser digits
 - Larger requirement for motion
METACARPAL FRACTURES

- **Classification**
 - Location
 - Base
 - Shaft
 - Neck
 - Pattern
 - Transverse
 - Short Oblique
 - Spiral
 - Quality
 - Comminuted
 - Articular involvement

- **Key Questions**
 - Articular involvement
 - Displacement
 - Stability

THUMB METACARPAL

- Approx 25% of all metacarpal fractures occur in the thumb metacarpal, with 80% of those occurring at the base. The Bennett fracture is the most common.
- Because of the compensatory movement of the adjacent joints, the thumb is more forgiving of residual deformity than the fingers.
- Malrotation is rarely a problem.
- Angulations in the frontal plane of <15-20 degrees and in the lateral plane usually cause no functional deficits.

BENNETS FRACTURE

- Intra-articular fracture of 1st MC Base
 - Most common Thumb MC Fx
 - Predictable pattern of deformity
 - Adduction Supination & Shortening
 - Generally requires operative fixation to prevent subluxation of CMC joint and post-traumatic OA.

BOXER FRACTURES

- Treatment based on location & displacement
 - Location
 - Better tolerated in Small > Ring > Long > Index
 - Angulation – Almost always apex dorsal
 - Acceptable Angulation controversial
 - Small finger <30-50 degrees
 - Index finger <10-15 degrees
 - Recent survey of ASSH members showed wide variation in surgical indications
 - Rotational Deformity Poorly Tolerated
 - Check for scissoring or overlap, if present then CRPP indicated
 - Multiple Fractures – Inherently less stable
 - Often requires operative fixation

Green's Operative Hand Surgery
METACARPAL SHAFT FRACTURES

- Treatment Based Of Location & Displacement
 - Central Ray better tolerated than Border Ray
 - Almost all minimally displaced metacarpal fractures can be managed non-operatively

- SURGICAL TREATMENT FOR
 - Any Rotational Deformity
 - Multiple adjacent fractures
 - Excessive Angulation
 - >10°to radial and long
 - >20-30° for ring and small
 - Shortening >-5 mm --- will result in extensor lag
 - Displaced transverse fractures
 - Open Fractures

Surgical Treatment

- Three Basic Options
 - CRPP with K-wires or Metacarpal Nail
 - Good for transverse or very short oblique
 - ORIF with Lag Screws
 - Good for long oblique fractures
 - Technically demanding
 - Always some anxiety with early motion
 - ORIF with Plate and Screws
 - Will work for most fracture patterns
 - Rigid fixation allows early motion
 - New generation of dedicated low profile hand plates result in fewer tendon problems

METACARPAL ORIF

- Can be Intra or Extra-Articular
 - Near anatomic alignment is a prerequisite for treatment
 - Intra-articular fractures
 - Joint MUST be concentrically reduced
 - Extra-articular fractures
 - Malalignment or shortening will invariably lead to poor outcomes due to extensor mechanism imbalance

MIDDLE/PROXIMAL PHALANX FRACTURES

- Close Treatment
 - Short-arm cast or orthosis for 4 weeks
 - SAC with MPJs in flexion
 - Dorsal blocking splint with metacarpal bar
 - I have not had much success in maintaining reduction of displaced fractures
 - Best results in fractures that are minimally displaced

- Closed Treatment
 - Short-arm cast or orthosis for 4 weeks
 - SAC with MPJs in flexion
 - Dorsal blocking splint with metacarpal bar
 - I have not had much success in maintaining reduction of displaced fractures
 - Best results in fractures that are minimally displaced
PHALANGEAL SHAFT FRACTURES

- Fracture Displacement dictated by location in relation to tendon insertions
- Proximal Phalanx Shaft: Apex volar due to pull of intrinsics and Central slip
- Middle Phalanx Shaft:
 - Proximal to FDS insertion >> Apex Volar
 - Distal to FDS insertion >> Apex Dorsal

Closed treatment:
- Only if anatomic reduction possible
- Generally reserved for stable transverse fractures
- Must watch closely with serial x-rays

Surgical treatment:
- Oblique or unstable fractures
- Open fractures
- Displaced fractures

PHALANGEAL SHAFT FRACTURES

ORIF
- Comminuted fractures or treatment delay
- Extensor tendon issues inevitable
- Proximal Phalanx:
 - I approach through the central tendon for prox fractures and through the transverse retinacular ligament for distal fractures
- Middle Phalanx:
 - Mid-Lateral approach
- Fixation with multiple screws or wires vs. a low profile modular hand plate
 - Technically demanding, limited real-estate, tiny screws that love to fall off of screwdriver

Surgical Options
- CRPP:
 - Best for transverse or oblique fractures without severe comminution
 - Needs to be done early (callous forms quickly)
 - Preferred technique when feasible do to minimal scarring of extensor mechanism
 - Use multiple small wires and try to avoid tethering the central slip

THE JAMMED FINGER

INTRA-ARTICULAR PHALANX FRACTURES

- Often missed initially
- Delayed Rx >>> Poor result
- Jammed fingers need quality dedicated films that show concentric reduction on the true lateral

INTRA-ARTICULAR PHALANX FRACTURES

Dorsal Fracture Dislocation of PIP
INTRA-ARTICULAR PHALANX FRACTURES

3 GOALS OF TREATMENT
• Concentric reduction of joint
• Restoration of articular surface (if possible)
• Allow early controlled motion
 ○ PIP joint gets stiff quickly

Multiple Treatment options available
• Highly challenging injury without single ideal treatment
• Closed Reduction and splinting
 ○ Dorsal blocking splint that allows flexion
 ○ Must confirm reduction and follow closely w/ serial x-rays
• ORIF
 ○ Technically difficult
 ○ Surgical trauma can lead to profound stiffness
• Dynamic External Fixation
 ○ Allows for early motion
 ○ Minimal surgical trauma
• Extension Block Pinning
 ○ Problems with tethering of extensor mechanism

CONDYLER FRACTURES

Intra-Articular fractures of the Phalangeal Head
• Highly Unstable
 ○ Almost all require surgery
 ○ If caught early can generally reduce closed and fix with percutaneous wires or screws

FRACTURE DISLOCATIONS OF THE PIP JOINT

Challenging Injuries
• Often neglected or misdiagnosed as a “Jammed Finger”
• PIP Joint is sensitive to injury and prone to stiffness
• Delay in Rx → Poor Result
• The key to Diagnosis is a good lateral x-ray that is reviewed by a discerning eye

PIP FRACTURE DISLOCATIONS

Dorsal fracture dislocations (most common)
• Middle phalanx displaces dorsally
 ○ Volar Base of Middle phalanx fractures
 ○ Combo of avulsion from volar plate and impaction from proximal phalangeal head
 ○ Treatment dictated by post-reduction stability
 ○ Stable reduction → Splinting
 ○ Unstable → Surgery

Operative Orthopaedics

This will never stay reduced
PIP FRACTURE DISLOCATIONS

- Closed Management
 - Possible with smaller avulsion fractures
 - Usually <40% of articular surface
 - After closed reduction must assess position of stability
 - Fractures tend to be less stable in extension
 - Dorsal block splint to block extension
 - I use fluoroscopy to determine “safe zone”
 - Ideally you should not splint in more than 30 degrees to prevent flexion contracture

- Operative treatment for unstable fractures
 - ORIF
 - Reduction and dorsal-block pinning
 - Technically simple and avoids surgical trauma
 - Drawback is tethering of central slip → tendon adhesions
 - Dynamic External Fixation
 - Technically demanding (fussy operation)
 - Must have a compliant patient and good therapist
 - Hemi-Hamate Arthroplasty
 - Very difficult but very cool
 - Big-time surgical trauma → lots of rehab
 - Donor site morbidity

DORSAL BLOCK PINNING

Operative Orthopaedics

PIP ORIF

Operative Orthopaedics

DYNAMIC EXTERNAL FIXATION

Operative Orthopaedics

HEMI-HAMATE

Operative Orthopaedics
FINGERTIP INJURIES AND DISTAL PHALANX FRACTURES

SUBUNGUAL HEMATOMA
- Traditionally > 50% Hematoma Assoc. w/ Underlying Nail-bed Laceration
- Need For Repair Based On Status Of Nail Plate
 - IF INTACT
 - Simple drainage for pain relief
 - Stone at needle or heated paper clip
 - IF FRAGMENTED
 - Need to remove nail and repair nail-bed lac
- 50% of Nail Bed Injuries associated w/ distal phalanx fracture.
 - Should be referred for x-ray evaluation

SEYMORE FRACTURE
- Distal Phalanx fracture assoc. w/ a nail-bed lac
- Open fracture
 - Needs ER referral for debridement and ABX
 - Nail-bed often interposed in fracture site

NEVER, EVER, PUT NYLON SUTURES IN SMALL CHILDREN

TUFT FRACTURES
- Extra-Articular Fractures
 - Usually crush injuries
 - Soft Tissue component often dictates Rx
 - Nail bed injury – Chin requires repair
 - Soft tissue loss – May need coverage
 - Crush type fractures of the tuft are generally stable and do not require stabilization
 - Even non-unions are often painless
TUFT FRACTURES

- Extra-Articular Fractures
 - Usually crush injuries
 - Soft Tissue component often dictates Rx
 - Nail Bed injury – Often requires repair
 - Soft tissue loss – May need coverage
 - Crush type fractures of the tuft are generally stable and do not require stabilization
 - Even non-unions are often painless

DISTAL PHALANX FRACTURES

- Articular Fractures
 - Generally involve the insertions of the flexor or extensor tendons
 - Dorsal Lip Fractures “Boney Mallet”
 - Avulsion of the terminal extensor
 - If >40% of articular surface then may see volar subluxation of distal phalanx
 - Treat with CRPP or ORIF (I prefer pinning)
 - Volar Lip Fractures “Boney Jersey Finger”
 - These are typically treated surgically
 - Must Restore the FDP insertion

FDP AVULSION FRACTURE

SUMMERY

- Wide variety of hand fractures
- Early diagnosis and timely orthopaedic follow-up is key to successful outcome
- Need a high index of suspicion for articular fractures
 - BEWARE THE “JAMMED FINGER”
- Treatment aimed at creating stability to allow early motion.
- Good therapy is the key to success

THANK YOU